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ARTICLE INFO ABSTRACT

Keywords: Long-acting lipid-based nanomedicines (LaLBNs) aim to sustain therapeutic effect through prolonged exposure
Lipid-based nanomedicine and controlled drug release. However, extended circulation does not always translate into improved clinical
Long-acting outcomes. For instance, polyethylene glycol (PEG)-modified liposomes show enhanced pharmacokinetic (PK)

In vivo fate
Structural design
Dynamic evaluation system

parameters such as half-life and area under the curve, yet their benefits, as observed with Doxil®, often fail to
meaningfully surpass free doxorubicin. This discrepancy arises because standard PK measurements quantify total
drug concentration, which combines both of the encapsulated inactive drug and bioavailable released drug. True
therapeutic longevity hinges not on carrier persistence in blood, but on the spatiotemporal pattern of active drug
availability at the target site. Therefore, a rational evaluation and understanding of the in vivo journey of
nanocarriers are essential prerequisites for achieving effective therapy. In this review, we summarize the rational
design of LaLBNs and systematically evaluate the in vivo fates using an absorption, distribution, metabolism, and
excretion framework. We critically assessed existing analytical methods and proposed strategies that integrate
both temporal and spatial dimensions to better capture the dynamic fate of LaLBNs. By reframing LaLBNs as
active biological entities rather than inanimate carriers, we advocate a paradigm shift from merely prolonging
circulation to comprehensively orchestrating the entire delivery process, thereby narrowing the gap between
nanocarrier design and therapeutic performance.

Abbreviations: ABC, Accelerated blood clearance; Al, Artificial intelligence; AUC, Area under the curve; CARPA, Complement activation-related pseudoallergy;
CMC, Critical micelle concentration; Cmax, Maximum plasma concentration; CD47, Cluster of differentiation 47; Dox, Doxorubicin; DPPC, Dipalmitoyl phospha-
tidylcholine; DSPC, Distearoylphosphatidylcholine; EPR, Enhanced permeability and retention; FDA, U.S. Food and Drug Administration; Fc, Fragment crystallizable
region; HO-PEG, Hydroxyl-terminated polyethylene glycol; IgM, Immunoglobulin M; KCs, Kupffer cells; LaLBNs, Long-acting lipid-based nanomedicines; LBNs, Lipid-
based nanomedicines; Lip, Liposomes; LDLR, Low-density lipoprotein receptor; LNPs, Lipid nanoparticles; LSEC, Liver sinusoidal endothelial cells; mPEG, Methoxy-
terminated Polyethylene Glycol; mRNA, Messenger RNA; MSPs, Membrane scaffold proteins; PBPK, Physiologically based pharmacokinetic; PK, Pharmacokinetics;
PEG, Polyethylene glycol; PEGylation, Polyethylene glycol conjugation; PPE, Palmar-plantar erythrodysesthesia; RES, Reticuloendothelial system; siRNA, Small
interfering RNA; SIRPq, Signal regulatory protein alpha; T/NT, Target-to-Non-target Ratio; T,,,, Phase transition temperature; TSP-1, Thrombospondin-1; VLP, Virus-
like particle.
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1. Introduction

Lipid-based nanomedicines (LBNs), such as liposomes and lipid
nanoparticles (LNPs), are widely adopted in clinical practice because of
their ability to significantly enhance the bioavailability of poorly soluble
or unstable therapeutic agents [1-3]. However, conventional LBNs are
susceptible to rapid recognition and clearance by the reticuloendothelial
system (RES), resulting in short circulation times [4]. The prevailing
evaluation paradigm prioritizes extended blood circulation as a central
design objective and efficacy predictor, often employing pharmacoki-
netic (PK) parameters, such as half-life (ti/2), Area under the curve
(AUQ), and maximum concentration (Cpayx), as the key success metrics
[4,5]. To overcome rapid clearance, surface modifications such as
PEGylation have been extensively used to substantially prolong circu-
lation time, yielding long-circulating LBNs [6-8]. Within the conven-
tional framework that equates blood drug concentration with
bioavailability, a classical perspective has emerged, suggesting that long
circulation implies long-acting drugs [9]. Thus, an extended residence in
the systemic circulation is presumed to automatically translate into
prolonged therapeutic effect. Consequently, long-circulating LBNs are
often regarded as long-acting LBNs (LaLBNs) [3,9-11]. Under this
rationale, LaLBNs have been promoted to improve drug solubility and
safety, and to reshape PK profiles to achieve sustained therapeutic
exposure. Such properties are considered highly valuable in fields such
as oncology, chronic infections, and gene therapy, where stable drug
levels are crucial for efficacy, and a reduced dosing frequency can
enhance patient compliance and minimize off-target toxicity [2,12,13].

However, a critical translational paradox remains that markedly
improved circulation often fails to yield proportional therapeutic ben-
efits in patients. Despite substantial enhancements in PK profiles, many
clinically approved LaLBNs do not demonstrate superior efficacy
compared to free drugs (Table 1) [14-21]. For instance, PEGylated
liposomal doxorubicin (Doxil®), although exhibiting a significantly
extended half-life and improved safety profile compared to conventional
doxorubicin, did not significantly improve overall survival in some
clinical cases [14,15]. Similarly, SPI-077, a PEGylated liposomal
cisplatin, showed a prolonged circulation half-life and was well-
tolerated. However, it exhibited efficacy in a Phase II clinical trial for
non-small cell lung cancer, with an objective response rate of only 4.5%
[16]. This disconnection between prolonged systemic exposure and
inadequate pharmacological benefits underscores a fundamental gap in
understanding the mechanistic relationship among PK behavior, the in
vivo fate of LaLBNs, and therapeutic output. The current evaluation
paradigm heavily relies on the static PK metrics, such as AUC, Cp,ax, and
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t1/2, as surrogate markers of efficacy [22]. Although these parameters
reflect the retention time of a drug in the body, they suffer from an
inherent limitation. In the PK study, the total drug is generally measured
without distinguishing between the encapsulated (carrier-associated)
and released (free) forms. Only free drugs are pharmacologically active,
while the encapsulated cannot engage with biological targets [23].
Thus, conventional PK monitoring captures hybrid kinetics that fail to
accurately represent the time-dependent profiles of active agents. This
issue is equally critical at the tissue distribution level. Most bio-
distribution studies focus on the accumulation of total drugs in various
organs, overlooking essential questions regarding the drug state (carrier-
bound vs. free), its delivery to specific target cells, and how the carrier
actively influences biodistribution.

Furthermore, drug carriers should not be viewed as merely inert
excipients. They actively participate in and influence the entire in vivo
journey of the drug, potentially triggering immune responses, causing
organ accumulation toxicity, and interfering with intracellular traf-
ficking pathways, all of which profoundly affect drug efficacy and safety
[24-28]. Thus, a core challenge in LaLBNs development is the weak
correlation between PK and pharmacodynamic (PD) outcomes, which
fails to differentiate active from inactive drug forms and overlooks the
carrier’s active role in shaping drug fate and its intrinsic biological ef-
fects. To enhance the clinical translation of LaLBNs, it is imperative to
move beyond the long-circulation paradigm and redefine “long-acting”
as a system-level outcome that integrates PK stability with carrier-
mediated bioactive drug availability. This review aims to systemati-
cally analyze the composition and structure of LBNs and their in vivo
fate, critically assess the limitations of current PK-based evaluation
methods, and propose a multidisciplinary framework for the rational
design and dynamic evaluation of LaLBNs based on their journey in the
body. Only by grounding formulation design in a comprehensive
mechanistic understanding of the entire delivery process can we achieve
the transition from long-circulating to truly long-acting formulations,
ultimately improving clinical outcomes.

2. Lipid-based nanocarrier platforms

The in vivo fate and therapeutic efficacy of LaLBNs depend critically
on their physicochemical properties, which are largely determined by
the choice of nanocarrier platform and its constituent lipid materials.
Without the protection of a nanocarrier, conventional small-molecule
injectables undergo rapid systemic distribution, enzymatic degrada-
tion, and renal clearance or biliary excretion, resulting in short half-lives
and necessitating frequent administrations [17,29]. In contrast, LaLBNs

Table 1
Pharmacokinetic-pharmacodynamic comparison of some conventional drugs versus their LaLBNs formulations
Drug Formulation Dose t,/, (h) AUC Ref. Key PD / Clinical efficacy outcomes Ref.
50 me/ 3.5 Dose: 50 mg/m? (q4w)
Free doxorubicin m? & 10.4 (mgeh/ PFS: 6.8 months
L L) 0S: 21 months
1 1
Doxorubicin 50 me/ 902 U71 Dose: 60 mg/m? (q3w) (5]
Doxil® > 8 459 (mgeh/ PES: 7.8 months
L) 0OS: 22 months
100 ~5.33
Free cisplatin mg/m? ~0.38 (pgeh/ [18] Monotherapy response rate: 6-32%
. . & mL)
Cisplatin 8233 [16]
100 No efficacy at 100 mg/m?
PI- .2 h, 16
SPI1-077 mg/m? 99.28 E;lf). / L6l Response rate: 7.1% at >200 mg/m?>
Irinotecan 100 55 (23;?1;‘ [19]
mg/m? 11.5 ntll%) In advanced pancreatic cancer, Onivyde®/5FU demonstrated efficacy and safety
Irinotecan 1364 comparable to FOLFIRI (5FU/leucovorin/irinotecan), but at a cost approximately 30 [20]
(.)mvyde®.(l.r1no.tecan 70 i 25.8 (ugeh/ 211 times higher.
liposome injection) mg/m mh)

Note: PFS, progression-free survival (time from treatment initiation to disease progression or death); OS, overall survival (time from treatment initiation to death from
any cause); q4w, once every 4 weeks; q3w, once every 3 weeks; AUC, area under the plasma concentration-time curve; t1/2, elimination half-life.
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overcome these limitations through multilevel engineering strategies
that modulate particle size, surface properties, and environmental
responsiveness, thereby effectively reshaping their pharmacokinetic
profiles [30-32].

LaLBNs platform, including liposomes, LNPs, micelles, solid lipid
nanoparticles (SLNs) and lipid nanodiscs have been extensively inves-
tigated in preclinical or clinical settings, demonstrating their consider-
able versatility and strong translational potential in drug delivery. Each
formulation exhibits distinct structural characteristics and functional
advantages that directly dictate in vivo behavior (Fig. 1; Table 2) [33].
Several of these systems have achieved notable commercial success
(Table 3) [12,34-36].

2.1. Liposomes: versatile bilayer vesicles for drug loading

Liposomes, one of the earliest and most clinically successful nano-
carriers, are spherical vesicles composed of one or more phospholipid
bilayers enclosing a central aqueous core. This unique architecture al-
lows for the simultaneous encapsulation of hydrophilic drugs in the
internal aqueous compartment and hydrophobic or amphiphilic agents
in lipid bilayers. Several formulations have been approved for clinical
usage such as Lipusu® (paclitaxel, for ovarian cancer) [37], Doxil®/
Caelyx® (doxorubicin, for ovarian cancer and Kaposi’s sarcoma) [14],
and Onivyde® (irinotecan, for pancreatic cancer) [38], as well as Vyx-
eos® (a liposomal co-formulation of daunorubicin and cytarabine for
acute myeloid leukemia) [39]. These approvals highlight the versatility
and broad therapeutic impact of liposomes, particularly in oncology but
also across other disease areas.

Liposomes can be engineered into various structural configurations,
including small unilamellar vesicles, large unilamellar vesicles, and
multilamellar vesicles, to customize their biodistribution, drug release
kinetics, and cellular uptake for specific therapeutic applications [1].
Their compositional flexibility, biocompatibility, and capacity for both
passive and active targeting have solidified their roles as a foundational
platform in nanomedicine.

Liposomes are widely surface-modified with PEG to form LaLBNs.
Grafting PEG-lipid conjugates onto the liposomal surface creates a

Liposomes LNPs

Micelles Nanodiscs

e— lonizable lipid

—  Lipid 2+ Hydrophilic drug

we— PEG-Lipid

A& Cholesterol

¢ Hydrophobic dru
Solid lipid core s =

Fig. 1. Structural schematics of the representative LaLBNs, including lipo-
somes, lipid nanoparticles (LNPs), micelles, solid lipid nanoparticles (SLNs) and
lipid nanodiscs. Created using biorender.com.
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hydrophilic, sterically stabilizing corona that minimizes protein
adsorption (opsonization) and subsequent recognition by the RES,
thereby significantly prolonging the systemic circulation half-life of li-
posomes. For example, Doxil® exhibits a plasma half-life of over 40 h in
human, in contrast to approximately 10 h for free doxorubicin [17,40].
Such extended circulation is a crucial prerequisite for passive tumor
targeting via the enhanced permeability and retention (EPR) effect
[17,41].

2.2. LNPs: engineered systems for nucleic acid delivery

LNPs have emerged as the leading non-viral platform for nucleic acid
delivery. Their clinical impact was first realized with patisiran (Onpat-
tro®), the first FDA-approved small interfering RNA (siRNA) therapeu-
tic, which was authorized in 2018 for the treatment of hereditary
transthyretin-mediated amyloidosis [42,43]. This milestone demon-
strates the potential of LNPs to enable targeted gene silencing in vivo.
Subsequently, LNPs played a pivotal role in the rapid development of
messenger RNA (mRNA) vaccines, such as Comirnaty® and Spikevax®,
during the COVID-19 pandemic, which received emergency use autho-
rization in 2020 [44].

Structurally distinct from conventional liposomes, LNPs feature a
dense nonlamellar core composed of ionizable lipids, phospholipids,
cholesterol, and PEGylated lipids. This architecture enables the efficient
encapsulation and protection of diverse nucleic acid payloads, including
mRNA, siRNA, and gene-editing components [45]. Despite these suc-
cesses, several challenges remain to be addressed. PEGylation can
induce immunogenicity, manifested as anti-PEG antibodies, which
limits the efficacy of repeated dosing regimens [46]. Moreover, LNPs
exhibit pronounced hepatic tropism due to apolipoprotein-mediated
uptake, restricting their utility for extrahepatic targeting and resulting
in their rapid clearance by RES [47]. Several strategies have been
developed to overcome these limitations and achieve prolonged circu-
lation and targeted drug delivery. These include the chemical modifi-
cation of RNA and novel formulation techniques aimed at enhancing
mRNA stability and protection [48-50]. For instance, Su et al. [51]
demonstrated that reducing the cholesterol-to-lipid ratio in LNPs
diminished liver transfection while enhancing lung-specific targeting.

2.3. Micelles: solubilization with inherent instability

Micelles are a class of nanostructures formed through the self-
assembly of amphiphilic molecules driven by hydrophobic interactions
in aqueous media [52]. They typically exhibit a core-shell architecture
comprising a hydrophobic core and hydrophilic shell, which enables the
effective solubilization of poorly water-soluble drugs. Among the
various building blocks, polyethylene glycolylated distearoyl phospha-
tidylethanolamine (PEG-DSPE) is a widely investigated amphiphilic
lipid molecule composed of the phospholipid DSPE and a hydrophilic
PEG chain [53]. This molecule can spontaneously self-assemble in
aqueous environments to form well-defined, monodisperse micelles. The
hydrophobic core can encapsulate lipophilic drugs, such as paclitaxel,
whereas the PEG shell provides colloidal stability and prolonged circu-
lation characteristics [54]. Currently, micellar systems based on DSPE-
PEG are being validated preclinically. In contrast, several polymer-
based micelles have received clinical approvals. For example,
paclitaxel-loaded micellar formulations, such as Genexol-PM® (using
PEG-PLA copolymer) and Zisheng®. These utilize hydrophobic polymer
segments to form a stable core, achieving efficient solubilization and
tumor-specific accumulation of paclitaxel [55,56].

A long-standing concern regarding micellar systems is their ther-
modynamic instability in physiological conditions. It has been conven-
tionally thought that intravenous injection leads to rapid dilution below
the critical micelle concentration (CMC), causing premature disas-
sembly and drug release [57]. However, recent studies have indicated
that micelles can maintain their structural integrity in vivo for a
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Table 2

Comparison of different lipid-based nanomedicines
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Feature

Micelles

Liposomes

LNPs SLNs

Lipid Nanodiscs

Core Structure

Liquid/Semi-liquid

Aqueous core + lipid bilayer

Solid composite lipid Solid lipid matrix

Disc-shaped lipid bilayer

Mainl, Hydrophili hiphili
Payload Type hyezil?o}l:l)hobic h;d:;;)hétiicé ampiipfutic ot Nucleic acids, siRNA, mRNA  Mainly hydrophobic Mainly hydrophobic
Stability Moderate to low High Moderate High Moderate
Circulation Time Short to moderate Long (after PEGylation) Short to moderate Long (after PEGylation) Moderate
13 ti
reI.)al.'a ton Easy Moderate Moderate Moderate Moderate to high
Difficulty
Established 1
Clinical Application Preclinical Established (Doxil®, Ambisome® etc.) Emerging (mRNA vaccines) d(sel;iiVeisy )e (oral Preclinical
Table 3
Representative marketed lipid-based nanomedicines (LBNs)
Type Company & Brand Name Active Ingredient Indication Approved Launch
by Year
Crucell Berna Biotech - Epaxal  Inactivated hepatitis A virus Hepatitis A EMA 1993
Crucell Berna Biotech - Influenza virus strains A and B
. Influenza EMA 1997
Inflexal® V hemagglutinin
IDM Pharma - Myocet Doxorubicin Metastatic breast cancer EMA 2001
Elan Pharmaceuticals - Mepact ~ Mifamurtide Non-metastatic osteosarcoma EMA 2009
Glaxo Smith Kline - Mosquirix =~ Recombinant CSP Malaria EMA 2021
Nexstar Pharmaceuticals - Doxorubicin Ovarian cancer and Kaposi’s Sarcoma FDA/EMA 1995/
Doxil®/Caelyx P 1996
Ph: ticals -
Sequus Pharmaceuticals Amphotericin B Severe fungal infection FDA 1995
Abelcet®
Sequus Pharmaceuticals - - . .
Amphotericin B Severe fungal infection FDA 1996
Amphotec®
NeXstar Ph ticals -
edstar Fharmaceuticals Daunorubicin HIV-related Kaposi’s sarcoma FDA 1996
DaunoXome®
Skye Pharm Inc. - Depocyt® Cytarabine Neonatal tumor-related meningitis FDA 1999
Novartis AG - Visudyne Verteporfin Choroidal neovascularization FDA 2000
Liposomes  SkyePharm Inc. - DepoDur™ Morphine Sulfate Pain management FDA 2004
Pacira BioSciences - Exparel® Bupivacaine Pain management FDA 2011
Talon Therapeutics - Margibo Vincristine Acute lymphoblastic leukemia FDA 2012
Merrimack Ph: ticals -
e.rrlmac armaceuticals Irinotecan Metastatic pancreatic cancer FDA 2015
Onivyde™
Ph: icals - D bici bi
Jazz Pharmaceuticals aunoru- e and. Cytarabine . Acute lymphoblastic leukemia FDA 2017
Vyxeos® Recombinant Varicella-Zoster Virus
Glaxo Smith Kline - Shingrix glycoprotein E Shingles and its subsequent neuropathic pain FDA 2017
Insmed - Arikayce Kit Amikacin Nontubercuhlous mycobactenal lung disease due to FDA 2018
Mycobacterium avium complex
Luye Pharma - Lipusu® Paclitaxel Ovarian cancer NMPA 2003
CSPC Pl}armaceutlcal Group Doxorubicin Ovar'lan cancer, HIV-associated Kaposi’s sarcoma, and NMPA 2022
-Duomeisu® multiple myeloma
CSPC Pharmaceutical Group - Mitoxantrone Adult patients with relapsed or refractory peripheral T- NMPA 2022
Duoenda® cell lymphoma
Jiangsu Hengrui Medicine - . .
. Irinotecan Pancreatic cancer NMPA 2022
Yueyouli@
Pfizer/BioNTech - Comirnaty BNT162b2 Prevention of COVID-19 FDA 2021
Moderna - mRNA-1273 mRNA-1273 Prevention of COVID-19 FDA 2021
Pol; thy due to hereditary transthyretin-
LNPs Alnylam - Onpattro™ siRNA ° y.neuropa y. ue‘ O herecifary transtiyretin FDA 2018
mediated amyloidosis
PC Ph: ical -
CSPC Pharmaceutical Group SARS-CoV-2 spike mRNA Prevention of COVID-19 NMPA 2023
SYS6006
SLN Boehringer -Mucosolvan Ambroxol Chronic bronchitis Germany /

Retard

substantial period. For drugs with high plasma protein-binding affinity,
such as paclitaxel, the dominant release mechanism is often direct
payload transfer from the micelle core to abundant plasma proteins
rather than disintegration of the micelle itself [58]. Consequently,
although the micellar carrier may remain structurally intact during
circulation, its therapeutic cargo can be rapidly released.

2.4. SLNs: a stable delivery platform based on solid lipid matrix

SLNs are spherical nanocarriers composed of biocompatible solid
lipids (e.g., triglycerides, fatty acids, waxes) that remain solid at both
room and body temperature, with typical diameters ranging from 50 to

1000 nm [59]. Their structure consists of a solid lipid core stabilized by
surfactants, which encapsulate active pharmaceutical ingredients in a
molecularly dispersed or dissolved state [60]. Unlike aqueous-core li-
posomes or liquid-core micelles, the solid matrix of SLNs enhances their
physical stability and facilitates controlled drug release. Moreover, SLNs
lipid components are generally recognized as safe (GRAS), and the
system shows low aggregation tendency and minimal drug leakage,
supporting administration via transdermal, oral, pulmonary, and
parenteral routes [61,62].

The sustained-release behavior of SLNs stems from the solid lipid
core, which retards drug diffusion and allows release through matrix
erosion or surface degradation [63]. Surface modification with stealth
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coatings, such as PEG or Pluronic F188, further prolongs circulation by
reducing opsonization [64]. These properties make SLNs suitable for
long-acting applications in oncology, infectious disease therapy and
vaccine delivery [65]. For example, Mishra et al. [66] developed
surface-modified SLNs for delivering hepatitis B surface antigen
(HBsAg), achieving enhanced cellular uptake and a stronger Thl im-
mune response compared with soluble HBsAg or mannosylated carriers.

Despite these advantages, challenges remain, including limited drug-
loading capacity, potential drug expulsion during storage, and insta-
bility due to lipid crystallization. The surfactants used in SLN formula-
tions may also raise concerns regarding cytotoxicity.

2.5. Nanodiscs: a membrane protein-mimetic platform

Nanodiscs are discoidal nanostructures that self-assemble from lipid
bilayers encircled by membrane scaffold proteins (MSPs) or synthetic
polymers. With a diameter of 10-20 nm and a thickness resembling
natural cell membranes (~4-5 nm), they form stable, water-soluble
platforms ideal for incorporating membrane proteins, such as G
protein-coupled receptors, ion channels, and transporters [67-70]. It
was originally developed by Sligar et al. to study cytochrome P450 [68].
Nanodiscs have emerged as promising vehicles for delivering hydro-
phobic drugs, peptides, and biologics.

The key advantages of nanodiscs include tunable size via MSPs or
polymer design, and ease of surface modification for targeting or stealth
functionalization [67]. Their flat, discoidal morphology promotes
unique flow dynamics in the bloodstream. Under shear stress, nanodiscs
tumble and rotate, enhancing contact with endothelial cells and favoring
vascular wall adhesion [71]. This shape also modulates protein
adsorption and reduces immune recognition. For instance, edge-
localized PEG can inhibit IgM-mediated complement activation and
RES clearance [72]. Nanodiscs can also adsorb apolipoproteins,
enabling receptor-mediated transport across barriers, such as the blood-
brain barrier [72]. Wang et al. demonstrated that nanodiscs suppress the
accelerated blood clearance (ABC) phenomenon upon repeated dosing
while retaining tumor-targeting capability of the surface-modified folic
acid [73]. Despite these strengths, clinical translation remains chal-
lenging because of high MSP production costs, potential immunoge-
nicity, and the need for improved assembly homogeneity and targeting
precision.

2.6. Lipid composition as a determinant of nanomedicine performance

The functional performance of LaLBNs stems from the synergistic
interplay between their constituent lipids. Each lipid plays a distinct but
interconnected role in regulating the assembly, stability, bio-
distribution, intracellular trafficking, and ultimately, the therapeutic
efficacy of LaLBNs [74,75]. Consequently, the rational selection and
combination of lipid materials is crucial for optimizing nanomedicine
design. The lipid compositions of some clinically approved LBNs are
summarized in Table 4 [14,17,42,76-82].

2.6.1. Structural Lipids

Structural lipids, such as distearoylphosphatidylcholine (DSPC),
dipalmitoyl phosphatidylcholine (DPPC), and sphingomyelin, are key
components of LBNs. They constitute the bilayer structure of liposomes,
form the lipid matrix of LNPs, and contribute to the hydrophobic do-
mains of micelles [83,84]. The selection and ratio of these lipids directly
determine the core physicochemical properties of nanocarrier, thereby
influencing the formulation stability, drug loading capacity, in vivo
behavior, and therapeutic efficacy. Saturated phospholipids, which have
a higher phase transition temperature (Ty,), impart greater structural
rigidity to nanocarriers, effectively resisting oxidation and hydrolysis,
thereby enhancing long-term stability. For instance, DSPC (T, ~ 55 °C)
significantly improves the structural integrity of liposomes and LNPs in
physiological environments, reducing passive drug leakage and
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Table 4
Lipid composition of representative marketed LBNs

Trade name
(generic name)

Indication

Lipid composition

ALC-0315:DSPC:

Comirnaty® K
(BNT162b2 COVID-19 Prevention Cholesterol:ALC-0159
. (46.3:9.4:42.7:1.6 molar
mRNA Vaccine) .
ratio)
DaunoXome®
(Liposomal AIDS-Related Kaposi’s DSPC:Cholesterol (2:1 molar
Daunorubicin Sarcoma ratio)
Citrate)
DOPC, DPPG, Cholesterol
D t® Neoplastic Meningiti > ’ ?
epocyt® eoplastic Meningitis Triolein
DOPC, DPPG, Cholesterol
DepoDur™ Pain management S olestero
and Triolein
Doxil®/Caelyx® Ovarian Cancer. Kaposi’s HSPC:Cholesterol:DSPE-
(Liposomal ) P PEG2000 (56:39:5 molar
. Sarcoma, Multiple Myeloma )
Doxorubicin) ratio)
Marqibi
argl o® Acute Lymphoblastic SM:Cholesterol (60:40 molar
(Liposomal ! .
. Leukemia ratio)
Vincristine)
Mepact® High-grade, resectable, non-  DOPS:POPC (3:7 molar
(Mifamurtide) metastatic osteosarcoma ratio)
Combination th ith
ombination .era[?y w EPC:Cholesterol (55:45
Myocet® cyclophosphamide in .
| molar ratio)
metastatic breast cancer
Onivyde® Metastatic Pancreatic DSPC:Cholesterol:DSPE-
(Liposomal PEG2000 (3:2:0.015 weight
K Cancer .
Irinotecan) ratio)
. . . DLin-MC3-DMA:DSPC:
Onpattro® Hereditary Transthyretin Cholesterol:PEG2000-DMG
(Patisiran) Amyloidosis

Spikevax® (mRNA-
1273 Vaccine)

COVID-19 Prevention

(50:10:38.5:1.5 molar ratio)
SM-102:DSPC:Cholesterol:
PEG2000-DMG
(50:10:38.5:1.5 molar ratio)

Visudyne® Choroidal Verteporfin:DMPC:EPG (1:8
(Verteporfin) Neovascularization molar ratio)
Xparel® (Liposomal . DEPC, DPPG, Cholesterol,
. . Pain Management . .
Bupivacaine) Tricaprylin

maintaining vesicle stability, especially in serum-rich conditions
[85-87]. In contrast, unsaturated phospholipids have a lower T,, which
enhances membrane fluidity and promotes fusion with the cell mem-
brane [88,89]. However, they are also more susceptible to lipid degra-
dation, potentially leading to premature drug leakage and
compromising storage and circulatory stability. Although structural
lipids are less commonly employed in micelles, lipid-like polymers with
high structural order play a similar role in enhancing kinetic stability
and preventing premature disassembly [90].

Notably, the function of structural lipids in LNPs extends beyond
passive scaffolding. Kulkarni et al. [91] reported that in empty LNPs,
DSPC-cholesterol complexes are primarily localized in the outer layer,
whereas in siRNA-loaded LNPs, a portion co-internalizes with the
nucleic acid payload. This suggests that structural lipids may actively
contribute to payload stabilization and help maintain functional integ-
rity during intracellular transport.

2.6.2. Ionizable lipids

Nucleic acid therapeutics, such as siRNA and mRNA, are character-
ized by their high molecular weight, negative charge, and susceptibility
to nuclease degradation, which hinder their direct penetration through
cell membranes and necessitate the development of efficient delivery
systems for their administration. Early studies predominantly employed
cationic lipids, such as 1,2-dioleoyl-3-trimethylammonium-propane
(DOTAP) and 3B-[N-(N',N'-dimethylaminoethane)-carbamoyl] choles-
terol (DC-Chol), to form liposomes or nanocomplexes that electrostati-
cally bind nucleic acids and facilitate cellular uptake [92]. However,
these lipids remain positively charged at physiological pH, leading to
nonspecific adsorption of plasma proteins, immune activation, and
cytotoxicity. These issues often result in compromised in vivo stability,
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limited safety, and challenges in clinical translation [93].

To overcome these limitations, ionizable lipids (e.g., DLin-MC3-
DMA, SM-102 and ALC-0315) were developed. A key design feature of
these lipids is the incorporation of a tertiary amine group, which enables
smart charge-switching with optimized pKa values (typically ranging
from 6.2 to 6.8) and exhibits pH-responsive behavior that is essential for
multiple stages of the delivery process [94]. At the neutral pH of blood
(~7.4), ionizable lipids remain neutrally charged, minimizing nonspe-
cific interactions with plasma proteins and enhancing systemic stability.
Under acidic conditions, such as those within endosomes (pH ~5.5-6.0),
the amine groups undergo protonation. This allows electrostatic in-
teractions with negatively charged nucleic acids (e.g., mRNA and
siRNA) and promotes endosomal membrane disruption [95]. The pro-
tonation of ionizable lipids induces a critical structural transition from a
lamellar phase to an unstable nonlamellar phase (e.g., hexagonal HII),
which perturbs the endosomal membrane and facilitates the cytosolic
release of the payload, thereby addressing a major rate-limiting step in
the delivery of nucleic acids [45,96].

2.6.3. Neutral stabilizing lipids

Cholesterol is a classic neutral stabilizing lipid. It intercalates within
lipid assemblies, enhancing structural integrity by modulating mem-
brane fluidity, filling packing defects between acyl chains, and pro-
moting membrane fusion. Moreover, cholesterol can be chemically
modified to improve drug delivery efficiency. For instance, Zhang et al.
[97] constructed an efficient gene transfection system using DC-Chol
and DOPE. In another study, Patel et al. [98] demonstrated that
replacing 25% and 50% of cholesterol with 7-a-hydroxycholesterol
significantly enhanced mRNA delivery efficiency in primary human T
cells by 1.8-fold and 2.0-fold, respectively. This improvement was
attributed to the modified LNPs, which promoted the increased forma-
tion of late endosomes and reduced recycling endosomes, thereby
facilitating enhanced endosomal escape and payload delivery.

However, recent studies have revealed a trade-off. Although
cholesterol is essential for maintaining carrier stability, excessive
cholesterol impedes cellular uptake and intracellular trafficking, ulti-
mately reducing delivery efficiency [45]. For example, in LNPs formu-
lations containing the ionizable lipid KC2, the solubility of cholesterol in
the hydrophobic core is limited. Therefore, stabilizing such systems re-
quires reducing the cholesterol content and increasing the proportion of
DSPC, underscoring the importance of a tailored design for specific
systems [75]. Furthermore, Kawaguchi et al. [99] demonstrated that
reducing cholesterol content in mRNA-LNPs can suppress protein
expression in the liver, further indicating the influence of cholesterol
levels on the systemic circulation and biodistribution of the carriers.

2.6.4. PEG-conjugated lipids

PEG-conjugated lipids are synthetic amphiphiles composed of a hy-
drophobic lipid anchor (commonly DSPE or cholesterol) covalently
linked to a hydrophilic PEG polymer chain. These molecules are integral
components in the formulation of LaLBNs, where they are incorporated
into the lipid bilayer to confer surface hydration and steric stabilization.
The most widely used variant is DSPE-PEG, in which DSPE serves as the
membrane anchor, ensuring stable integration into the liposomal or
LNPs structure [6,7,32].

The chemical architecture of PEG-lipids critically determines their in
vivo behavior [6]. Key structural parameters include PEG molecular
weight, linker chemistry (e.g., ester, carbamate, or urea bonds), and
molar incorporation ratio. The length of the PEG chain influences the
thickness of the hydrated steric barrier, while the density of PEG-lipids
on the surface affects both colloidal stability and functional interference
with biological processes. Notably, PEG-lipids are not permanently
anchored; they can gradually desorb from the nanoparticle surface in
circulation due to thermodynamic instability, a process that impacts the
duration of the stealth effect [100,101].

Furthermore, insufficient PEG coverage can lead to colloidal
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instability and rapid clearance, whereas excessive PEGylation may ste-
rically hinder cellular uptake [25,101-103]. To address limitations
associated with persistent PEG coverage, cleavable PEG-lipid derivatives
have been developed. These include pH-sensitive (e.g., hydrazone),
redox-sensitive (e.g., disulfide), and enzyme-cleavable (e.g., matrix
metalloproteinase substrates) linkers that allow controlled shedding of
the PEG layer in response to specific microenvironmental stimuli at
target sites [104].

3. Surface engineering for long-acting

Surface engineering is essential for achieving long-acting perfor-
mance in LaLBNs. Modification of LBNs surface with PEG, polymers, or
biomimetic components significantly enhances circulation half-life,
colloidal stability, and biodistribution [49]. Rational surface design is
critical for minimizing rapid clearance and off-target effects, thereby
ensuring a sustained therapeutic efficacy. In this section, we systemat-
ically review and compare the mainstream surface engineering strate-
gies based on their core mechanisms, performance advantages, and
current limitations, as summarized in Table 5. The following sub-
sections provide a detailed discussion of each of these strategies.

3.1. PEGylation: mechanism, optimization, and clinical success

PEGylation, the covalent conjugation of PEG to nanocarrier surfaces,
is the most widely adopted strategy in preclinical and clinical nano-
medicines for prolonging systemic circulation time. The profound
impact of PEGylation stems from its ability to confer stealth properties
through several key mechanisms. The hydrophilic and flexible polymer
chains form a dense, hydrated steric barrier on the nanoparticle surface.
This barrier primarily functions to enhance colloidal stability by pre-
venting aggregation through steric repulsion. Simultaneously, it signif-
icantly reduces the nonspecific adsorption of plasma proteins, a process
known as opsonization, which is the critical first step leading to clear-
ance by the RES. By effectively minimizing opsonin binding, PEGylation
enables the nanocarriers to evade immediate immune recognition,
thereby achieving prolonged circulation in the bloodstream [6-8].

PEG is a biocompatible and highly hydrophilic polymer approved by
the US Food and Drug Administration (FDA) for use in pharmaceuticals,
cosmetics, and food, underscoring its safety and broad applicability [8].
The efficacy of PEGylation is highly dependent on PEG surface density
and chain length. Dos Santos and coworkers demonstrated that at a fixed
PEG molar ratio of 2%, increasing PEG molecular weight from 2 kDa to 5
kDa significantly improved the AUC of liposomes. However, this benefit
diminished at higher PEG densities (5 mol%), indicating an upper limit
to the advantages of chain elongation under dense-grafting conditions
[105]. Similarly, Ren et al. [106] systematically evaluated the impact of
PEG chain length (1, 2, 5, and 10 kDa) and incorporation ratio (5%,
10%, and 20% w/w of total lipid) on the PK profile of liposomes (Fig. 2).
They confirmed that increasing the PEG length from 1 kDa to 5 kDa
enhanced prolonged circulation; however, a reversal occurred at 10
kDa, likely due to the formation of curved micellar structures, which
promoted liposome aggregation or structural disruption, thereby
shortening the circulation time. Regarding PEG content, liposomes
containing 10% and 20% (w/w) of 5 kDa PEG exhibited similar phar-
macokinetics, both demonstrating significantly longer circulation than
those with 5% PEG. These findings highlighted the formulation-
dependent nature of the optimal PEGylation parameters.

The clinical translation of PEGylation has been remarkably success-
ful. The representative approved PEGylated nanotherapeutics include
Doxil® for ovarian cancer and Kaposi’s sarcoma, which demonstrates a
circulation half-life more than 4-times longer than that of free doxoru-
bicin [14]. In addition, Onpattro® (patisiran), an LNP-based siRNA
therapeutic that employs PEG-lipid conjugates to avoid immune clear-
ance and facilitate hepatocyte-specific delivery. This enables targeted
gene silencing in the treatment of hereditary transthyretin amyloidosis
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Table 5
Comparison of PEG and alternative surface modification strategies for LaLBNs.
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[107].

3.2. PEGylation: functional limitations and trade-offs

Despite its well-established success in enhancing the PK profile of
nanomedicines, PEGylation introduces a series of intricate functional
and immunological trade-offs that substantially compromise the drug
delivery efficiency and long-term clinical applicability.

3.2.1. Functional limitations

PEGylation confers beneficial stealth properties; however, excessive
incorporation of PEG can compromise liposomal stability and promote
the formation of curved micellar structures or other non-lamellar, un-
stable morphologies [108]. Moreover, PEG exerts a broad inhibitory
effect on cellular uptake, impacting not only phagocytic macrophages
but also the intended target cells, thereby reducing internalization ef-
ficiency. Kuai et al. [109] systematically demonstrated this dose-
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dependent suppression, observing a progressive decrease in cellular
uptake as the molar percentage of PEG-lipid increased from 2% to 10%.
The steric hindrance imposed by PEG chains also interferes with the
conjugated targeting ligands, restricting their mobility and conforma-
tional freedom, thereby leading to a diminished receptor-binding ca-
pacity. Hennig et al. [110] reported that PEG conjugation markedly
increased the dissociation constant (Kq) of losartan from 1.1 nM to 630
nM, highlighting a substantial reduction in targeting affinity (Fig. 3A
and 3B). Additionally, the PEG corona significantly impedes endosomal
escape, a crucial step for bioactive molecules, such as nucleic acids and
proteins, which must reach the cytosol to avoid lysosomal degradation.
Song et al. [111] provided evidence that PEGylated liposomes were
predominantly trapped in lysosomes without nuclear delivery, whereas
non-PEGylated counterparts effectively reached the nucleus.

3.2.2. Immunogenic challenges: anti-PEG immunity

Contrary to the initial perception of immunological inertness, PEG is
now recognized as an immunogenic agent. Repeated administration of
PEGylated nanocarriers can induce the production of anti-PEG anti-
bodies, triggering the ABC phenomenon (Fig. 3C) [112-114]. These
anti-PEG antibodies bind to the PEGylated surface, promoting opsoni-
zation and rapid sequestration by the RES, which markedly reduces their
blood circulation time and therapeutic efficacy [115]. In addition to
clearance, anti-PEG antibodies activate the complement system via the
classical pathway. This activation yields potent anaphylatoxins (e.g.,
C3a, C4a, and C5a), which not only provoke pseudoallergic reactions
but also function as opsonins, enhancing immune clearance through
complement receptors on phagocytic cells [116]. The high prevalence of
pre-existing anti-PEG antibodies in the general population poses a sig-
nificant concern. As summarized in Table 6, the reported seropreva-
lence has increased dramatically over time. While only about 0.2% of
healthy individuals tested positive for anti-PEG IgM in 1984 [117],
recent studies (circa 2016) report detection rates ranging from 23% to
72% [118-120]. Notably, a 2019 analysis using highly sensitive assays
found prevalence rates exceeding 95% in some cohorts [121]. The exact
mechanisms driving this increase remain unclear but are potentially
linked to the widespread use of PEG in consumer products (e.g., cos-
metics) and pharmaceutical formulations [119,120,122].

Pre-existing anti-PEG antibodies pose a substantial risk to the effi-
cacy and safety of PEGylated therapeutics. For example, Kozma et al.
[123] demonstrated that high pre-existing anti-PEG antibody titers
significantly increase the risk of hypersensitivity reactions following
mRNA-LNP vaccination in children. In a clinical study of pediatric acute
lymphoblastic leukemia, Khalil et al. [124] observed high baseline rates
of anti-PEG IgG (13.9%) and IgM (29.1%) among 701 patients receiving
PEG-asparaginase; higher antibody levels were correlated with reduced
treatment efficacy.

3.2.3. Clinical hurdles

The immunogenicity and functional limitations of PEGylation pose
significant clinical challenges to its use. A notable example is the dose-
limiting toxicity of palmar-plantar erythrodysesthesia (PPE, or hand-
foot syndrome) associated with Doxil® [126,127]. This condition typi-
cally presents as painful erythema, desquamation, and ulceration on the
palms and soles, frequently accompanied by rashes on the trunk and
limbs shortly after infusion. Emerging evidence indicates that this
adverse effect is mechanistically linked to complement activation (spe-
cifically iC3b deposition) on the surface of PEGylated liposomes. The
opsonized liposomes are recognized by neutrophils via the CR3 receptor,
which internalize and actively transport them across the vascular
endothelium into cutaneous tissues. This process leads to localized
accumulation of DOX, subsequent keratinocyte damage, and inflam-
matory responses, providing a direct explanation for the clinical mani-
festations of PPE and related cutaneous rashes (Fig. 3D and 3E) [113].
This pathway not only underlies the dose-limiting toxicity but also un-
derscores a critical trade-off between safety and efficacy in PEGylated
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Fig. 2. Impact of PEG chain length and grafting density on the in vivo fate of liposomes. (A) Pharmacokinetic profiles of liposomes with different PEG chain lengths in
mice. (B) Fluorescence imaging of biodistribution in model mice 48 h after injection of liposomes with varying PEG chain lengths. (C) Pharmacokinetic profiles of
liposomes with different PEG contents in healthy mice. (D) Fluorescence imaging of biodistribution in model mice 48 h after injection of liposomes with different PEG
contents. Adapted with permission from ref [106]. Copyright 2019, American Chemical Society.

nanomedicine design. Preclinical studies suggest that complement in-
hibition or engineering liposomes with minimized complement activa-
tion potential may help mitigate these effects [113]. Furthermore, PEG
chains are susceptible to oxidative degradation during storage, which
may alter their critical quality attributes and compromise their product
performance [128]. The ABC phenomenon, typically triggered after the
initial dose, significantly impairs the efficacy of multi-cycle therapies
and raises substantial concerns regarding their long-term immunoge-
nicity and safety [129]. Collectively, these factors restrict the applica-
bility of PEGylated liposomes in the management of chronic diseases.

3.2.4. Strategies to overcome PEG-specific challenges

In response to these challenges, strategies are being actively pursued.
Conventional approaches have focused on optimizing PEG parameters,
such as fine-tuning chain length and grafting density to balance stability
with reduced immune exposure [130], employing short-chain lipid an-
chors (e.g., C14 lipids) to facilitate in vivo dissociation and reduce RES
persistence [131], and designing environmentally responsive, cleavable
PEG-lipids (e.g., esterase-sensitive PEG-cholesterol) that shed the PEG
layer upon reaching specific physiological environments [132]. Recent
advances have expanded the arsenal of available solutions. Tian et al.
[114] developed a novel hyperbranched 8-arm-PEG nanostructure that

effectively suppressed the ABC phenomenon, attributed to its all-PEG
composition which minimizes the presentation of PEG as a hapten on
an immunogenic carrier (Fig. 4A and 4B). Building on the insight that
human anti-PEG IgM antibodies exhibit pronounced specificity for
methoxy-terminated PEG (mPEG), our group devised a strategy utilizing
hydroxy-terminated PEG (HO-PEG) as a superior alternative to mPEG.
This approach offers a dual advantage, including evasion of pre-existing
anti-mPEG antibodies and reduced intrinsic immunogenicity, thereby
addressing both pre-existing and induced immune responses [125,133].
We have also pioneered a surface-blocking tactic employing single-chain
variable fragments (scFvs). Pre-adsorption of these scFvs onto the
PEGylated surface occupied the epitopes recognized by anti-PEG anti-
bodies. Crucially, as scFv lack an Fc region, they block binding without
triggering complement activation, thereby providing an effective cam-
ouflage (Fig. 4C) [134].

3.3. Non-PEG anti-fouling polymers for stealth nanomedicine

To address the immunological and pharmacokinetic drawbacks of
PEGylation, alternative hydrophilic polymers have been investigated as
surface modifiers for nanomedicine applications. These include zwit-
terionic polymers and PVP, among others, each offering distinct
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advantages in enhancing in vivo stability and reducing immune
recognition.

PVP has emerged as a promising non-immunogenic polymer for
enhancing the long circulation properties of LaLBNs. Torchilin and
colleagues [135] reported that incorporation of 10 mol% PVP effectively
could completely abolish aggregation induced by polyquaternium salts
of negatively charged liposomes. More importantly, a comparative study
revealed that PVP-coated nanoparticles maintained consistent elimina-
tion half-lives (~20 h) upon repeated administration, whereas PEGy-
lated counterparts exhibited a dramatic reduction in circulation time
(from 33.6 h to 1.66 h) due to the ABC phenomenon [136]. Zwitterionic

polymers, such as poly(carboxybetaine) (pCB) and poly(sulfobetaine)
(pSB), form dense hydration layers via electrostatic interactions, effec-
tively resisting protein adsorption and enhancing nanocarrier in vivo
stability. Li et al. [137] demonstrated that pCB-based surface modifi-
cation conferred anti-fouling properties comparable to PEGylation,
while avoiding the ABC phenomenon and improving tumor accumula-
tion upon repeated dosing. Complementarily, Lin et al. [138] developed
PMPC-DSPE conjugates and showed that the incorporation of only 2 mol
% DSPE-PMPC into HSPC liposomes prevented aggregation and
enhanced colloidal and serum stability, mimicking the natural cell
membrane interface. To further advance this field, Zhao et al. [139]


http://biorender.com

Y. Tang et al.

Table 6
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leveraged the unique adaptive properties of zwitterionic polymers to
construct amphiphilic lipid nanoparticles (ZwiLNPs) for efficient siRNA
encapsulation and targeted delivery. The design of ZwiLNPs enabled
them to adaptively alter surface charge in response to physiological
conditions, resulting in remarkable liver-targeting capabilities and
improved endosomal escape following cellular internalization. Notably,
while these non-PEG polymers demonstrate superior performance in
avoiding ABC and maintaining circulation stability, their long-term
biological safety profiles require comprehensive evaluation, which is
critical for their clinical translation.

3.4. Biomimetic engineering via the CD47-SIRPa "don 't-eat-me" pathway

CDA47, a transmembrane glycoprotein ubiquitously expressed on the
surface of mammalian cells, serves as a key molecular marker of "self" by
engaging with signal regulatory protein alpha (SIRPa) in macrophages
[140]. This interaction triggers an inhibitory signaling cascade that
suppresses phagocytosis, thereby protecting healthy cells from innate
immune clearance [141]. Leveraging this biological mechanism, CD47-
based biomimetic strategies, particularly the surface display of CD47 or
its functional mimetic peptides (e.g., "Self" peptide), have been actively
pursued to enhance the in vivo longevity of nanotherapeutics [142-144].

Traditionally, long-circulating systems are evaluated by reduced
macrophage uptake and hepatic accumulation, metrics established for
PEGylated carriers. However, this criterion is less relevant for CD47- or
self-peptide-modified nanoparticles, which often show similar total liver
accumulation [143]. Tang et al. [142] demonstrated that while self-
peptide conjugation did not prevent initial macrophage adhesion, it

10
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potently inhibited internalization, indicating that CD47 signaling acted
downstream of recognition to block phagocytic execution. In vivo, these
liposomes were processed more slowly by Kupffer cells (KCs), leading to
prolonged systemic exposure despite comparable organ accumulation,
demonstrating a kinetic advantage rather than an altered bio-
distribution. Importantly, the efficacy of the "don’t eat me" signal is not
uniform across all macrophage phenotypes. Evidence revealed the dif-
ferential regulation of M1 (pro-inflammatory) and M2 (anti-inflamma-
tory/reparative) subtypes [144,145]. M2 macrophages express high
levels of CD36, a scavenger receptor that binds to thrombospondin-1
(TSP-1). The C-terminal domain of TSP-1 can competitively interact
with CD47, disrupting the CD47-SIRPa interaction and thereby atten-
uating the "don’t eat me" signal [144]. Consequently, CD47-based
evasion is more effective against M1 macrophages, which lack this
inhibitory crosstalk, offering a potential avenue for microenvironment-
responsive delivery in diseases with polarized macrophage populations,
such as tumors and fibrotic tissue. Furthermore, synergistic strategies
that combine CD47-mediated active immune evasion with PEG-based
passive stealth have been shown to significantly enhance both biocom-
patibility and delivery efficiency [144].

In addition to peptide-based CD47 display, recent advances have
utilized natural cell membrane fusion to engineer nanocarriers with
enhanced immune evasion and targeting capabilities [146,147]. This
approach involves fusing synthetic liposomes with membrane vesicles
derived from specific cell types, such as red blood cells [146], platelets
[148], and leukocytes [149], to form hybrid liposomal systems. All these
approaches have demonstrated a remarkable ability to improve the PK
profiles of drugs in vivo.

4. Long circulation but unexpected performance: re-
interrogating in vivo fate of LaLBNs

Despite decades of research aimed at prolonging the systemic cir-
culation of LaLBNs through engineering strategies, numerous studies
have revealed that extended circulation often fails to translate into the
anticipated therapeutic benefits, highlighting a significant disconnect
between PK optimization and PD outcomes. Therefore, a paradigm shift
is urgently needed to redefine LaLBNs from inert drug carriers to active
biological entities with dual pharmacological properties. To understand
why prolonged circulation does not guarantee efficacy, a holistic un-
derstanding of the in vivo fate of LaLBNs is required. This requires
moving beyond conventional compartmental models to incorporate
dynamic blood behavior, tissue distribution and transport, metabolic
processing and drug release, clearance pathways, and biological
consequences.

4.1. Blood circulation: dynamic remodeling of biological identity

Upon intravenous injection, LaLBNs immediately enter a complex
biological environment where their surfaces undergo rapid remodeling,
fundamentally dictating the in vivo fates (Fig. 5).

4.1.1. Protein corona: remodeling biological identity

After injection into the bloodstream, LaLBNs rapidly adsorb bio-
molecules, such as proteins and lipids, forming a dynamic "protein
corona" composed of a tightly bound hard corona and a loosely associ-
ated soft corona [150,151]. This layer masks the synthetic surface and
dictates subsequent biological interactions. Opsonin (e.g., IgM and
complements) promotes recognition and clearance by the RES, whereas
dysopsonin (e.g., albumin and lipoproteins) may confer stealth proper-
ties and prolong circulation [112,136,152]. Notably, IgM adsorption
initiated complement activation via the lectin or classical pathway,
leading to opsonization and clearance [153]. Moreover, Guan et al.
[154] demonstrated that strain-specific differences in plasma protein
composition and RES activity in mice affect protein corona formation
and the metabolic pathways of liposomes. Furthermore, interspecies
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Fig. 4. Amelioration of accelerated blood clearance (ABC) phenomenon through optimization of PEG carrier structure or pretreatment with anti-PEG scFv corona.
(A) Kinetics of anti-PEG IgM and IgG production in mice following intravenous administration of PBS, PEG nanoparticles (NPs), PEGylated liposomes, or PEGylated
B-glucuronidase on days 1 and 6. (B) Pharmacokinetic profiles of PEGylated liposomes and NPs after pretreatment with PEGylated p-glucuronidase, demonstrating
reduced circulation time in the presence of anti-PEG antibodies, indicative of the ABC effect. Adapted with permission from ref [114]. Copyright 2022 American
Chemical Society. (C) Anti-PEG scFv corona mitigates the ABC phenomenon in PEGylated nanomedicines. Adapted with permission from ref [134]. Copyright

2021 Elsevier.

variations in the immunoglobulin-complement system influenced drug
responses; beagles exhibited higher complement protein levels than
rodents, leading to a stronger anti-PEG antibody-mediated ABC phe-
nomenon and a more pronounced pseudoallergy [155].

4.1.2. Surface engineering: a double-edged sword

Surface modification strategies, such as PEGylation, can reduce
opsonin adsorption and RES clearance but may induce anti-PEG anti-
bodies and the ABC phenomenon upon repeated dosing [129]. Beyond
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this well-known dilemma, the incorporation of active targeting ligands
can further modulate the immunorecognition of PEGylated systems.
Ligands such as folate, RGD peptides, and CDX peptides are commonly
conjugated to the distal end of PEGylated lipids (e.g., DSPE-PEG-folate),
utilizing PEG as both a stealth layer and a spacer to improve ligand
exposure. However, studies have revealed that liposomes functionalized
with folate or CDX can adsorb natural IgM antibodies upon intravenous
injection. This effect is attributed not to the ligand itself, but to neo-
epitopes formed by the structural configuration or clustering of the
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current evaluation systems, including the failure of static pharmacokinetic
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PEG-ligand complex [156,157]. IgM binding subsequently triggers
complement activation and accelerates RES clearance, while simulta-
neously masking the ligand and impairing its intended receptor-binding
capability. Likewise, cRGD-modified PEG-lipids may confer unintended
affinity for macrophages, diverting nanocarriers to off-target sites and
undermining targeting efficacy [158].

In addition to ligand-specific effects, part of the LaLBNs, especially
those with a positive surface charge or high PEG density, can activate the
complement system, generating anaphylatoxins (e.g., C3a and C5a) that
trigger mast cell degranulation and histamine release, potentially
causing complement activation-related pseudoallergy (CARPA), ranging
from mild infusion reactions to life-threatening responses [159-161].
Thus, surface modifications aimed at prolonging circulation may pose
new biological risks to the body.

4.1.3. Cell-mediated transport

LaLBNs can bind to blood cells, such as monocytes and neutrophils,
hijacking their migratory capacity to cross endothelial barriers and enter
tissues, including tumors, skin, and inflammatory sites [162]. While this
mechanism may enhance drug delivery to certain targets, it can also lead
to adverse effects, such as the accumulation of liposomal doxorubicin in
the skin, causing PPE [163]. Thus, cell-mediated transport plays a dual
role in improving the targeting potential while potentially increasing
off-target toxicity. Conventional uptake assays often overlook post-
internalization processes, such as intracellular drug release and traf-
ficking, limiting their ability to predict functional targeting, especially
for therapeutics requiring specific sub-localization [164].

4.2. Tissue distribution: mechanisms and off-target accumulation

The distribution of LBNs is pivotal to their in vivo fate, directly
determining their efficacy and toxicity. Owing to their size and inability
to freely traverse the intact endothelium, LaLBNs primarily accumulate
in specific tissues via passive targeting, including the liver, spleen,
inflamed regions, and solid tumors.

4.2.1. Hepatic distribution
The liver is the primary site of nanoparticle accumulation for
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LaLBNs, a phenomenon driven by its unique physiological features, such
as highly permeable sinusoidal endothelium, substantial blood supply
(representing >20% of cardiac output), and high density of resident
macrophages (Kupffer cells, KCs) [165,166]. It is estimated that 30-99%
of the administered nanocarriers accumulated in liver. Although well
documented, the underlying mechanisms remain complex [166]. Tsoi
et al. [167] reported that the velocity of nanoparticles within hepatic
sinusoids decreased by nearly 1000-fold compared to that in systemic
circulation, significantly prolonging the contact time and enhancing
their retention within hepatic tissues. KCs serve as primary clearance
cell. Bussin et al. [168] identified several receptor-ligand interactions,
such as those involving SR-A, FcyRIIB, HSPGs, SR-BI, and LDL-R, as
major contributors to nanoparticle uptake by KCs. Nevertheless, sub-
stantial hepatic retention persists even after KCs depletion or receptor
pre-saturation, suggesting the involvement of additional, yet unchar-
acterized, mechanisms (Fig. 6) [169]. Mahboubeh Hosseini-Kharat et al.
[47] emphasized the role of serum protein interactions, particularly
with ApoE, in mediating the liver specificity of LNPs, followed by rapid
uptake by hepatocytes.

4.2.2. Extrahepatic distribution

Current strategies for constructing long-circulating nanocarriers
aimed at extrahepatic delivery frequently lead to unintended bio-
distribution and elevated off-target accumulation. For instance, while
enhanced PEGylation can prolong systemic exposure, it often results in
increased dermal deposition, a key factor underlying clinical manifes-
tations such as PPE [163,170]. More critically, prolonged circulation
does not selectively improve targeting; instead, it non-specifically en-
hances nanoparticle accumulation in multiple non-target organs,
including the lungs, kidneys, and bone marrow. This creates a thera-
peutic dilemma characterized by enhanced targeting, enhanced off-
targeting [171,172]. Surface charge further dictates biodistribution
patterns. Cationic LBNs, for example, are rapidly cleared by the RES and
exhibit pronounced accumulation in pulmonary tissues [93,173]. This
explains why some cationic liposomes demonstrate high transfection
efficiency in vitro but fail in vivo due to acute toxicity. These observations
underscore that prolonged circulation alone does not guarantee thera-
peutic safety; rather, it may exacerbate off-target exposure by increasing
the duration of nanoparticle presence in the bloodstream.

Moreover, biodistribution profiles of LaLBNs display significant
species specificity. While rodent models typically show dominant liver
uptake, nonhuman primates often exhibit shifted accumulation toward
the spleen and kidneys. These discrepancies reflect inherent interspecies
differences in RES activity, lipid metabolism, and cellular receptor
expression, which collectively undermine the translational reliability of
preclinical data and have contributed to the failure of many long-
circulating formulations in clinical trials [17].

4.3. Metabolism and excretion: determinants of persistence and safety

The metabolic and excretion pathways of LaLBNs critically influence
their in vivo persistence, safety, and functional integrity. Most thera-
peutic LaLBNs exceed the glomerular filtration threshold (~5-6 nm) and
are cleared primarily via hepatobiliary elimination and phagocytic
degradation mediated by the RES. Clearance begins with RES recogni-
tion, followed by phagocytosis, lysosomal transport, and enzymatic
degradation, which is catalyzed by lipases and esterase under acidic
conditions. The resulting drug molecules and lipid components are ul-
timately excreted into bile [174].

Using doxorubicin-loaded liposomes (sLip/Dox) as an example
[175], our studies integrating cell sorting and drug quantification
demonstrated that KCs accounted for the majority of hepatic uptake
(~80-90%), while a limited amount of intact PEGylated liposomes
could enter the hepatocytes. After internalization by KCs, liposomes are
rapidly transported to lysosomes and degraded by acid-dependent li-
pases and esterase, leading to the release of free doxorubicin and diffuses
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Fig. 6. Liposome pre-treatment does not enhance the circulation time or tumor accumulation of systemically administered PEG-DMG and PEG-DSG siRNA-LNPs in
mice. (A) NMRI-nu immunodeficient mice bearing LNCaP tumors were systemically injected with liposomes (360 mg/kg) or PBS (control), followed by i.v. injection
of dually labeled PEG-DMG or PEG-DSG siAR-LNPs at a dose of 2.5 mg/kg siRNA. Six hours after PEG-DMG-LNPs and 24 h after PEG-DSG-LNPs administration mice
were sacrificed, organs perfused with PBS and tissues were collected for Cy5.5 (siRNA) and Cy7 (lipid) quantification. Plasma fluorescence was quantified for siAR-
Cy5.5 (B) and Cy7-DSPE (C) at 1 min, 1 h, 4 h and 6 h after PEG-DMG-LNPs treatment. Plasma fluorescence was measured for siAR-Cy5.5 (D) and Cy7-DSPE (E) 1
min, 1 h, 4 h, 6 h and 24 h after PEG-DSG-LNPs treatment. Adapted with permission under a CC-BY license from ref [169]. Copyright 2025 Elsevier.

into adjacent hepatocytes. This intercellular transfer establishes a
distinct zonal distribution throughout the liver lobule, with drug con-
centrations declining from pericentral to periportal regions, mirroring
the functional and metabolic zonation of the liver. Nanocarrier delivery
also reprograms the excretion pathway. Doxorubicin that reaches he-
patocytes is excreted into the bile largely in its parent form. Subsequent
degradation takes place in the intestine under the influence of the gut
microbiota, which may contribute to intestinal toxicity and enter-
ohepatic recirculation. Collectively, the sequential processes of slow RES
uptake, intracellular drug release, diffusion-mediated redistribution,
and prolonged biliary elimination underlie the characteristic slow-in,
slow-out pharmacokinetic behavior of sLip/Dox, which stands in sharp
contrast to the rapid clearance of the free drug.

This process is modulated by formulation parameters such as lipid
composition, PEG architecture, and surface charge, which influence
uptake kinetics, degradation rates, and biodistribution. Therefore, a
mechanistic understanding of these carrier-specific metabolic and
excretory pathways is essential for predicting drug exposure, off-target
toxicity, and overall safety.

4.4. Limitations of current in vivo fate evaluation systems

The in vivo fate of LaLBNs is highly complex, yet current evaluation
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frameworks remain largely rooted in paradigms developed for small-
molecule drugs, which are inadequate for capturing the dynamic and
multi-level behavior of nanomedicines.

4.4.1. Failure of static pharmacokinetic models

Classical compartmental models, which rely on the assumptions of
uniform tissue distribution and linear clearance Kkinetics, fail to
adequately describe the complex in vivo behavior of LaLBNs. These
models do not account for central aspects such as heterogeneous bio-
distribution, dynamic ligand dissociation, or the evolving composition
of the protein corona [176]. Although physiologically based pharma-
cokinetic (PBPK) models incorporate more realistic organ-level
anatomical and physiological parameters, they still fall short of
capturing critical dynamic processes, including nanoparticle surface
degradation and complement-mediated changes in clearance rates
[177,178]. Both model types exhibit considerable limitations in pre-
dicting the in vivo fates of LaLBNs.

These theoretical and computational limitations are paralleled by the
practical shortcomings of in vitro release assays. Conventional methods
cannot adequately mimic key in vivo conditions, such as physiological
shear stress, tissue barriers, and immune- and enzyme-rich microenvi-
ronments [179]. Moreover, they overlook the time-dependent evolution
of the protein corona, which significantly influences drug release and
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nanoparticle stability. The poor correlation between in vitro release
profiles and actual in vivo performance misguides the development of
long-acting formulations, highlighting a critical gap between experi-
mental models and biological realities.

4.4.2. Fragmented and inadequate metrics

The metrics currently employed, such as the target/non-target (T/
NT) ratio, cellular uptake efficiency, and subcellular localization, serve
as fundamental and practical tools for the initial characterization of
LaLBNs performance. They provide distinct value in quantifying key
aspects like targeting specificity and cellular interactions, forming an
essential part of the nanomedicine development toolkit. However, when
aiming to fully and accurately elucidate the complex in vivo fate of
LaLBNs, these metrics reveal limitations due to their fragmented and
static nature. The T/NT ratio, as an endpoint measurement, is highly
sensitive to the sampling time point and fails to capture dynamic pro-
cesses at the cellular or subcellular level [180]. Although uptake assays
are useful for quantifying internalization, they typically overlook critical
downstream events such as drug release kinetics and intracellular traf-
ficking. Furthermore, conventional cellular uptake assays often fail to
distinguish between nanoparticles that have been genuinely internalized
and those merely adsorbed onto the cell surface. This inability to
differentiate leads to an overestimation of internalized dose and signif-
icantly compromises the accuracy and predictive value of the data for
therapeutic efficacy [164]. Similarly, subcellular localization, particu-
larly endosomal escape efficiency, which is crucial for nucleic acid de-
livery, is frequently neglected in conventional assessments, despite its
profound influence on biological activity [181].

Imaging technologies, such as near-infrared fluorescence (NIRF) and
single-photon emission computed tomography (SPECT), have become
indispensable non-invasive tools for visualizing the distribution of
nanomedicines at the whole-body level, providing critical insights for
preclinical research. However, their utility is constrained by limitations
in spatial resolution, rapid signal attenuation, and limited tissue pene-
tration, which pose challenges for the long-term (weeks to months)
dynamic tracking of LaLBNs in vivo [182,183]. Consequently, significant
evidence gaps remain regarding long-term potential risks, such as lipid
metabolic dysregulation, nanoparticle deposition, chronic inflamma-
tion, and organ fibrosis. This gap presents a major challenge for estab-
lishing safe clinical dosing regimens and therapeutic windows [184].

4.4.3. Interspecies differences as a barrier to translation

Animal models serve as the cornerstone for translating drugs from
the laboratory to the clinic, providing an indispensable platform for the
initial assessment of the safety and efficacy of nanomedicines. However,
the in vivo fate of LaLBNs is regulated by mechanisms far more complex
than those of traditional small-molecule drugs. Their modes of interac-
tion with biological systems (e.g., plasma proteins, endothelial cells, and
immune cells) are fundamentally different, amplifying the impact of
interspecies physiological variations and creating significant challenges
in cross-species evaluation.

Research has demonstrated these species-specific differences at
multiple levels. Guan et al. [154] reported significant strain-dependent
variations in plasma protein composition and RES activity in mice,
which directly influence liposome protein corona formation and meta-
bolic clearance. Canines exhibit higher complement activity than ro-
dents, potentially exacerbating anti-PEG antibody production and
CARPA [155]. Furthermore, the biodistribution of LaLBNs varies
considerably between species, uptake is predominantly hepatic in ro-
dents, whereas nonhuman primates show higher accumulation in the
spleen and bone marrow. These differences reflect variations in species-
specific immune activity and receptor expression patterns, which
collectively undermine the predictive value of preclinical models and
contribute significantly to the failure of nanoparticle-based therapies in
clinical trials.

Beyond interspecies differences, the high degree of inter-individual
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heterogeneity among clinical patients (e.g., in immune status) likely
introduces even greater variability, further complicating the perfor-
mance prediction and efficacy modulation of nanomedicines.

5. Rational design of LaLBNs enabled by understanding in vivo
fate

For along time, the development of LaLBNs has followed a seemingly
clear but increasingly inadequate path. Researchers typically construct
nanomedicines with ideal physicochemical properties in vitro, such as
size below 100 nm, PDI under 0.2, and high encapsulation efficiency,
followed by animal experiments to validate long circulation and tar-
geting capabilities [185-187]. This linear logic from in vitro design to in
vivo validation essentially treats LaLBNs as inanimate carriers, assuming
their behavior can be controlled by a handful of physical parameters.
Such an approach largely relies on PK models derived from small-
molecule drugs and static distribution assumptions.

However, as systematically discussed in preceding sections, the
actual in vivo fate of LaLBNs is far more complex and dynamic than can
be predicted by these parameters alone. Processes such as protein corona
remodeling, surface re-functionalization, off-target accumulation, and
inefficient intracellular delivery collectively exhibit nonlinear, time-
dependent, and system-coupled characteristics. The limitations of
traditional evaluation frameworks, including the failure of static phar-
macokinetic models, lack of physiological relevance in vitro, fragmented
metrics, significant species differences, all point to one fundamental gap.
Our understanding on LaLBNs remains at the level of engineered ma-
terials, not as dynamic biological entities. As a result, these multi-level
complexities demonstrate that the classic, parameter-centric evalua-
tion paradigm is no longer sufficient. This necessitates a fundamental
shift toward a new framework where the in vivo fate is not an outcome to
be passively observed, but a dynamic process to be actively
programmed.

5.1. From static parameters to dynamic biological processes

The design of long-acting lipid-based nanomedicines (LaLBNs) has
traditionally centered on optimizing individual physicochemical pa-
rameters such as particle size, surface charge, or PEG density, under the
assumption that these static properties directly determine in vivo per-
formance. However, accumulating evidence indicates that the behavior
of LaLBNs in the body is not dictated by any single parameter in isolation
but emerges from a dynamic sequence of interactions between the
nanoparticle’s initial structure and the complex biological environment
it encounters [4,159,188-192]. For instance, reducing particle size can
enhance tumor penetration via the EPR effect [189], yet this benefit may
be offset by accelerated hepatic clearance [4]. Similarly, high-density
PEGylation prolongs systemic circulation time but often suppresses
liposome fusion with cell membranes, thereby impairing intracellular
drug release and therapeutic efficacy [159,190-192]. These inherent
trade-offs highlight a fundamental limitation of the parameter-centric
approach: optimizing one property frequently compromises another,
leading to suboptimal outcomes.

This realization underscores the need for a shift in design philosophy,
from isolated parameter tuning toward a more holistic understanding of
the nanoparticle’s in vivo journey. Rather than pursuing idealized static
features, the goal should be to anticipate and leverage the biological
processes that govern a carrier’s fate, including its circulation, bio-
distribution, cellular uptake, subcellular trafficking, and payload
release. This perspective recognizes that effective delivery arises not
from a single attribute but from the integrated outcome of multiple
interdependent events. A clear example is liver-targeted LNPs, whose
efficient delivery depends not only on passive factors such as size but
also on their ability to selectively bind serum ApoE, enabling LDL
receptor-mediated internalization into hepatocytes [47]. Likewise,
mitigating off-target effects, such as PPE caused by pegylated liposomal
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doxorubicin [113,163] or unintended hepatic accumulation and toxicity
associated with sSiRNA-LNPs [193,194], requires moving beyond passive
avoidance strategies. Instead, designs must account for active biological
interactions, allowing for more precise control over where and how
nanoparticles behave in the body.

5.2. From end-point measurement to multidimensional dynamic profiling

The current evaluation system for LaLBNs remains largely frag-
mented and static, often relying on single-time-point measurements of
tissue drug concentration (e.g., 24-h tumor accumulation) or simplified
T/NT ratios as key metrics [180]. However, for delivery systems
designed for long-acting therapy, initial drug accumulation is less crit-
ical than the capacity for prolonged retention and sustained release at
the target site. A system exhibiting lower early uptake but capable of
forming a stable drug reservoir and gradually releasing active in-
gredients may possess substantially greater therapeutic potential than
carriers exhibiting high initial accumulation but rapid clearance.

To better reflect therapeutic potential, the field must transition from
endpoint measurements to multidimensional and time-resolved
profiling. This approach emphasizes continuous monitoring of a nano-
particle’s behavior across both time and biological scales. It considers
not only the quantity of drug delivered to an organ but also the duration
of exposure, the specific cell types involved, the efficiency of endosomal
escape, the ability to evade lysosomal degradation, and the kinetics of
active payload release [181,195].

Temporal resolution spans from the immediate post-injection phase,
governing hemodynamic distribution and protein corona formation, to
days or weeks of tissue persistence and metabolic processing. Spatial and
functional resolution extends from whole-organ imaging down to sub-
cellular localization and molecular activity. For example, in mRNA de-
livery, even efficient cellular uptake of LNPs results in low protein
expression if endosomal escape is inefficient [181,195]. Only by inte-
grating these dimensions can we distinguish carriers that merely accu-
mulate from those that effectively deliver functional payloads over time.

5.3. Balancing fate across scales: toward structure-fate-efficacy mapping

The essence of fate programming lies in establishing a causal map-
ping relationship from the initial structure of nanocarriers to their in vivo
fate pathway and ultimately to the therapeutic output. This mapping
involves coupled mechanisms across multiple scales and requires the
systematic integration of knowledge at the following levels: at the mo-
lecular scale, lipid chain saturation influences membrane fluidity and
stability; cholesterol content modulates the compactness of the lipid
bilayer; PEG chain length and density determine protein anti-adsorption
capability and its shedding kinetics [92,105,111,196]; at the nanoscale,
parameters such as particle size, morphology, and rigidity directly affect
behavior under blood shear stress, endothelial contact probability, and
recognition efficiency by the RES [26]; at the systemic scale, the dy-
namic evolution of the protein corona, complement activation level, and
immune cell interactions collectively determine circulation half-life and
tissue distribution profiles [24,156]; at the cellular scale, factors
including the choice of endocytic pathway, endosome maturation rate,
and carrier disassembly kinetics determine whether the drug can be
effectively released into the cytoplasm or nuclear target sites [164,181].

Studies have shown that an optimal delivery system design often
resides in a dynamically balanced zone under multiple competing con-
straints. For instance, medium-length PEG chains achieve a superior
trade-off between circulatory stability and endosomal membrane fusion
capability compared with longer or shorter variants [190]. A moderate
positive charge enhances cellular uptake while avoiding excessive
complement activation and subsequent rapid clearance [159]. These
examples emphasize that the essence of rational design is not maxi-
mizing a single metric but rather identifying a system-wide optimum
through cross-scale and multi-mechanism synergies.
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5.4. Tool ecosystem upgrade

The future development of LaLBNs should transcend traditional
material engineering approaches and evolve into a dynamic closed-loop
system guided by in vivo fate mechanisms and supported by multidis-
ciplinary collaboration. By integrating advanced computational models,
high-resolution real-time imaging technologies, and intelligent algo-
rithms, this system aims to shift the LaLBNs design paradigm from
empirical trial-and-error and validation-based research to predictive
intelligent design.

5.4.1. Biomimetic physiological platforms for predicting long-term in vivo
behavior

Conventional in vitro models fail to adequately simulate the long-
term dynamic processes that LaLBNs undergo in vivo, such as sus-
tained release, biodegradation, and immune evasion. Emerging bio-
mimetic physiological platforms, including organ-on-a-chip and
vascularized organoid systems, can replicate critical biological barriers
and organ-level functions under physiologically relevant conditions over
extended time scales. For instance, perfused liver chips can be used to
systematically evaluate nanoparticle metabolism, cumulative hepato-
toxicity, and tissue retention, thereby establishing more clinically pre-
dictive models of hepatic disposition [197-200]. Vascularized tumor
organoids facilitate the study of nanoparticle penetration and EPR ef-
fects within a simulated tumor microenvironment, providing key
translational insights into the design of targeted drug delivery systems
[201].

5.4.2. Real-time multi-scale tracking

A comprehensive understanding of the spatiotemporal dynamics of
LaLBNs, including biodistribution, release pharmacokinetics, and
clearance pathways, is essential for their rational design. Integrated
high-resolution imaging and analytical platforms (e.g., PET-MRI
coupled with LC-MS/MS and single-particle tracking technologies)
provide continuous multi-scale monitoring capabilities from whole-
body distribution to subcellular localization [202-205]. Time-resolved
data help capture critical kinetic events, such as depot formation at
the injection site, target accumulation kinetics, and drug release dura-
tion, and identify potential failure modes, such as premature burst
release or unintended RES capture. When combined with mechanistic
pharmacokinetic models (e.g., PBPK models), these data can inform the
reverse optimization of carrier structural parameters, including lipid
composition, PEG architecture, and surface charge, to precisely tailor
the release profiles and targeting efficiency of the nanocarriers.

5.4.3. Artificial intelligence (AD) enabling predictive and iterative rational
design

The design of LaLBNs involves a high-dimensional parameter space
encompassing lipid chemistry, surface modifications, particle physico-
chemical properties, and biointerface characteristics. Al and machine
learning offer powerful tools for deciphering the complex nonlinear
relationships between formulation parameters and their in vivo perfor-
mance (Fig. 7) [206,207]. By training predictive models (e.g., random
forest, neural networks, and graph neural networks) on integrated
datasets (including composition attributes, in vitro assays, and in vivo
outcomes), Al can effectively correlate design variables (e.g., PEG den-
sity and cholesterol content) with key pharmacokinetic endpoints (e.g.,
AUC, half-life, and release rate), thereby accelerating the screening of
optimal formulations [208]. More importantly, Al can drive a closed-
loop R&D cycle of prediction, synthesis, testing, and learning. Coupled
with molecular dynamics simulations to unravel molecular mechanisms
and integrated with PBPK models to predict interspecies differences and
clinical translation potential, Al is advancing LaLBNs development from
traditional trial-and-error approaches toward predictable, iterative, and
high-throughput designs [209].
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6. Conclusion and outlook

This review critically examines the persistent translational chal-
lenges facing LaLBNs, particularly the disconnection between extended
circulation time and improved therapeutic efficacy. The prevailing
paradigm, which prioritizes prolonged bloodstream residence as a proxy
for successful drug delivery, has led to the widespread adoption of
pharmacokinetic parameters, such as half-life and AUC, as primary in-
dicators of nanomedicine performance. However, accumulating clinical
evidence reveals a concerning paradox: significantly improved PK pro-
files often fail to correlate with enhanced therapeutic outcomes. This
discrepancy underscores the fundamental limitations of the current
evaluation frameworks. A central limitation of this approach is the
conventional measurement of total drug pharmacokinetics, which con-
flates the signals from both carrier-encapsulated and free-drug mole-
cules. Standard assays cannot distinguish between intact nanocarriers
and released payloads, and thus fail to accurately represent the spatio-
temporal distribution of bioavailable drugs. More critically, nano-
carriers are not inanimate vehicles but dynamic bio-non-bio hybrid
entities that actively interface with biological systems. They modulate
protein corona formation, influence immune recognition, direct organ-
specific accumulation, and may even induce unintended toxicity or
subcellular trafficking barriers. These processes collectively dictate
therapeutic success but have historically been underappreciated in
LaLBNs design.

Consequently, achieving genuine long-acting efficacy requires a shift
in focus from circulation time alone to the integrated optimization of PK
stability and site-specific drug release. The rational design of LaLBNs
must transition from a narrow emphasis on their physicochemical
properties to a system-level approach that prioritizes in vivo fate pro-
gramming. This entails the systematic characterization and deliberate
engineering of key biological events post-administration, including
serum stability, immune evasion, target tissue accumulation, cellular
internalization, endosomal escape kinetics, and controlled drug release.

Looking forward, overcoming the long circulation, low efficiency
paradox will depend on building a mechanistic and quantitative un-
derstanding of the fate of LaLBNs in living systems. Real-time, in situ,
and multi-scale technologies capable of resolving the location, state, and
biological activity of nanocarriers and their payloads are essential to
transform nanomedicine from an empirical practice into a program-
mable and predictive discipline. Ultimately, the field must evolve from
pursuing passive prolonged circulation to achieving active biological
targeting and programmed therapeutic action, thereby unlocking the
full clinical potential of LaLBNs.
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